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ABSTRACT

The potential future installation of a multifunction phased-array radar (MPAR) network will provide ca-

pabilities of case-specific adaptive scanning. Knowing the impacts adaptive scanning may have on short-term

forecasts will influence scanning strategy decision-making in hopes to produce the most optimal ensemble

forecast while also benefiting human severe weather warning decision-making. An ensemble-based targeted

observation algorithm is applied to an observing system simulation experiment (OSSE) where the impacts of

synthetic idealized supercell radial velocity observations are estimated before the observations are ‘‘collected’’

and assimilated. The forecast metric of interest is the low-level rotation forecast metric (0–1-km updraft

helicity), a surrogate for tornado prediction. It is found that the ensemble-based targeted observation approach

can reasonably estimate the true error variance reduction when an effective method that treats sampling error is

applied, the period of model forecast is associated with less degrees of nonlinearity, and the observation in-

formation content relative to the background forecast is larger. In some scenarios, a subset of a full-volume scan

assimilation produces better forecasts than all observations within the full volume. Assimilating the full-volume

scan increases the number of potential spurious correlations arising between the forecast metric and radial

velocity observation induced state perturbations, which may degrade the forecast metric accuracy.

1. Introduction

The proposed future installation of a multifunction

phased array radar (MPAR) network across the United

States will present new opportunities for both the human

meteorologist and numerical weather prediction (NWP)

models (Weber et al. 2007; Zrnić et al. 2007; Heinselman

and Torres 2011; Curtis and Torres 2011; Yussouf and

Stensrud 2010; Supinie et al. 2017). The current WSR-88D

network requires approximately 4.5min to complete a

full-volume scan given its mechanically steered beam

whereas MPAR will be able to complete a full-volume

scan in under 1min via electronic beam steering while

sharing resources with the Federal Aviation Administration

(FAA) for aircraft tracking. This will providemore frequent

updates of rapidly evolving convective storms, in-

cluding tornadic supercells. This will also benefit me-

teorologists by increasing warning lead times through

situational awareness (Heinselman et al. 2012, 2015;

Kuster et al. 2015).

MPAR will have significant impacts on storm-scale

NWP and NOAA’s Warn-on-Forecast (WoF) program

which utilizes very short-term ensemble forecasts to in-

creasewarning lead times through radar data assimilation

(Stensrud et al. 2009, 2013). Storm-scale radar data as-

similation has been applied in numerous studies in recent

years (e.g., Snyder and Zhang 2003; Dowell et al. 2004;

Tong and Xue 2005; Aksoy et al. 2009; Yussouf and

Stensrud 2010, 2012; Yussouf et al. 2013; Wheatley et al.

2014; Johnson et al. 2015; Maejima et al. 2017; Wang and

Wang 2017;Maejima et al. 2019). Radar data assimilation

produces reliable analyses and subsequent short-term

forecasts (up to 3 h) of individual convective storms.

However, most studies have utilized radar data typical

of the WSR-88D (5- to 15-min assimilation cycling)

whereas a few have explored frequent updates associ-

ated with MPAR (Yussouf and Stensrud 2010; Supinie

et al. 2017; Stratman et al. 2020). Yussouf and Stensrud

(2010) show through a perfect model observing system

simulation experiment (OSSE) that 1-min full-volume

updates are able to sufficiently spin up convection

over a 15-min period while conventional 5-min up-

dates require around an hour of assimilation cycling.
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Frequent MPAR data cycling is also beneficial to het-

erogeneous mesoscale environment experiments and

low-level rotation forecasts (Supinie et al. 2017).

Another key feature of MPAR will be both elevation

and azimuth adaptive scanning capabilities via electronic

beam steering. MPAR will be able to repeatedly scan

across a specified azimuth range of interest given meteo-

rological phenomena of interest (e.g., convective storms)

rather than the full 3608 range. The other advantage (of

particular interest to this study) is the elevation-prioritized

scanning strategy (Heinselman and Torres 2011). This

technique allows repeated sampling of specified vertical

portions of meteorological phenomena without me-

chanically driven adaptive scanning as in WSR-88D

(e.g., low-levels of supercells where tornadogenesis can

occur). In scenarios where azimuthal and/or vertical

adaptive scanning strategies are utilized combined with

possible aviation tracking, full-volume scan observa-

tions may not be available.

The allotted operational time designated for weather

phenomena observation will have to be used wisely given

other potential uses of MPAR (e.g., aircraft tracking).

Although a full-volume scan can be completed in 1min,

the adaptive sampling abilities ofMPARdescribed above

would provide targeted subsets of a full-volume scan

with smaller observation error via increased radar dwell

time. Adaptive sampling also has advantages for opera-

tional forecasters. There could be rapidly evolving situations

(e.g., a tornado impacting a populated area) where sub-

minute low-level observations are beneficial for warning

issuance by meteorologists, and a decision will need to be

made regarding optimal adaptive scanning to benefit both

human forecasters and convective-scale ensemble forecasts

while also meeting the needs for aviation tracking. In such

described cases, only a subset of a full-volume scan could be

available for assimilation into an ensemble guidance system.

Given the scenarioswhereonly anobservation subsetwould

be available, the potential impacts of targeted subsets versus

full-volume scans need to be known before observations are

collected. Targeted radar observations may have broad

benefits for convective-scale data assimilation and fore-

casting as well as decision-making and social impacts.

The idea of determining ahead of time how to deploy the

observation network before the observations are made is

termed as ‘‘targeted observations’’ or ‘‘adaptive sampling’’

(e.g., Palmer et al. 1998; Berliner et al. 1999; Baker

and Daley 2000; Bishop et al. 2001; Ancell and Hakim

2007; Torn and Hakim 2008). Targeted observation tech-

niques in past studies have included both adjoint-sensitivity

(Buizza and Montani 1999; Gelaro et al. 1999; Langland

et al. 1999) and ensemble-based methods (e.g., Bishop

et al. 2001; Majumdar et al. 2001; Hamill and Snyder 2002;

Torn 2014). Ancell and Hakim (2007) demonstrate the

two methods produce different results both in spatial scale

of sensitivity fields and order of magnitude. Adjoint-

sensitivity uses only a single adjoint model integration

to determine forecast sensitivities. The ensemble-based

technique instead uses ensemble forecast and data as-

similation equations to estimate or predict the forecast

error variance reduction if a set of observations were

assimilated (Bishop et al. 2001; Ancell and Hakim 2007;

Torn and Hakim 2008; Torn and Hakim 2009). A specific

metric to measure variance reduction can be selected

based on the user’s interest. The method also involves

using ensemble regression or ensemble correlation at

different times. Previous targeted studies have focused on

synoptic-scale and tropical systems (e.g., Majumdar et al.

2001; Torn and Hakim 2008; Torn and Hakim 2009; Torn

2014). Few studies have attempted to utilize targeted ob-

servations to improve short-term convective-scale forecasts

(e.g., Limpert and Houston 2018). Chang (2014) highlights

the importance of assimilating targeted radial velocity in

space where background error covariances are significant

to improve vertical velocity forecasts. This study applies an

ensemble-based targeted observation method to radial

velocity observations of a single idealized splitting-supercell

thunderstorm in order to assess the ability of the algorithm

to predict the impacts of MPAR radial velocity observa-

tions collected through adaptive, targeted sampling on very

short-term convective-scale forecasts of low-level rotation.

Targeted observations for convective-scale data assimila-

tion and forecasts face multiple challenges. Convective-scale

processes are predominantly nonlinear, as are the relation-

ships between radar observations (i.e., reflectivity) and

model state variables. Using an ensemble-based targeted

observation technique on convective scales by assuming

linear relationships at different times and between observed

variables and forecast metrics presents more obstacles than

seen in previous targeted observation studies involving

larger scales. Ensemble sampling error on the convective

scale can also hinder the ability to appropriately estimate

the impacts of observations on subsequent forecasts.

As an initial test of an ensemble-based targeted obser-

vation algorithm for convective-scale NWP, a perfect-

model OSSE is designed to negate problems such as

model error and uncontrolled observation errors while

focusing on ensemble sampling errors and the effects of

nonlinearity which have significant impacts on convective

scales. Specifically, this study assesses the targeted obser-

vation algorithm ability to predict the impact of assimi-

lating synthetic radial velocity observations of a single

supercell on a low-level rotation forecast metric (a surro-

gate for tornado potential) a priori. Three simplified

scanning strategies are considered including low-level,

midlevel, and high-level to produce various observation

subsets of full-volume scans. These three observation sets
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will be assimilated independently to reveal the impacts on

low-level rotation forecasts compared to full-volume scans.

The targeted observation algorithm is also applied to de-

termine whether this technique can appropriately estimate

observation impacts on forecasts. Limitations of the algo-

rithm are presented and discussed.

This paper proceeds as follows. Section 2 describes the

methodology including ensemble design, targeted obser-

vation algorithm, and observations. The analytical results

follow in the section 3. The last section consists of a dis-

cussion, conclusions, and broader impacts of the results.

2. Methodology

a. Truth simulation and synthetic observations

Experiments in this study are created using the

Advanced ResearchWeather Research and Forecasting

(WRF-ARW, version 3.4.1) Model (Skamarock et al.

2008) initialized with an environment conducive to su-

percell development. The initial conditions are homoge-

neouswith open lateral boundary conditions. Thedomain

horizontal grid spacing is 2km and is 200km 3 200km.

There are 41 vertical levels extending approximately

20 km with an average ;500m spacing dependent on

height. The simulations use the Thompson et al. (2008)

microphysics scheme with no other parameterizations.

The truth simulation is initialized by a 3-K warm

bubble at the center of the domain in an environment

supportive of supercell development from both a kine-

matic and thermodynamic standpoint (Weisman and

Klemp 1982). The wind profile is a quarter-circle ho-

dograph with the shear vector turning 458 over the

lowest 2 km. The simulation runs for 2.5 h, creating dis-

tinct right- and left-moving supercells (Fig. 1). The right-

mover becomes the dominant cell with time (Figs. 1c,d).

Both radial velocity and radar reflectivity observa-

tions are harvested from the truth run state (described

below) where the assumed Doppler radar is slightly

south of the domain center. The storm develops 25 km

north of the radar location. The hypothetical radar

sweeps 1808 west-to-east in 58 azimuth increments over

the standard WSR-88D radar 14 elevation angles

[volume coverage pattern (VCP11); Steadhamet al. 2002].

All observations are interpolated to the 2-km simulation

grid. Radial velocity and reflectivity have observation

error variances of 4 (m s21)2 and 4 dBZ2, respectively

(Yussouf and Stensrud 2010; Sobash and Stensrud 2013;

Kerr et al. 2015). The radial velocity forward operator

FIG. 1. Truth simulation low-level reflectivity at (a) 45, (b) 60, (c) 75, and (d) 90min with radar location denoted

by a black dot.
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consists of the individual wind components along with

precipitation fall speeds (Lin et al. 1983) while the re-

flectivity forward operator requires mixing ratios of rain,

snow, and graupel (Ferrier 1994; Gilmore et al. 2004).

The synthetic radar observations are created by applying

the forward operators to the truth run then applying

random noise to account for observation error.

b. OSSE design

A perfect-model splitting supercell OSSE is conducted.

A 50-member ensemble is created by perturbing the ho-

mogeneous truth run environment horizontal wind com-

ponents via uncorrelated Gaussian noise from 0 to 11km

AGL by 2ms21. The warm bubble present in the truth

simulation is removed from all ensemble members. All

observations have a 12-km horizontal and vertical covari-

ance localization (Gaspari and Cohn 1999; Sobash and

Stensrud 2013; Kerr et al. 2015). Random perturbations are

added to the horizontal wind, temperature, and dewpoint

temperature fields at locations where reflectivity observa-

tions are greater than 20 dBZ, and the reflectivity absolute

innovation is greater than 10 dBZ (Dowell and Wicker

2009; Sobash andWicker 2015). This spins up convection in

the appropriate locations and maintains ensemble spread

throughout the experiment.

Radial velocity and reflectivity observations are as-

similated every 5min to sufficiently spin up the storm

within the ensemble using an ensemble adjustment

Kalman filter (EAKF; Anderson 2001) via the Data

Assimilation Research Testbed (DART; Anderson et al.

2009). Radial velocity observations collocated with re-

flectivity values less than 10 dBZ are not assimilated in

what is deemed clear air. The assimilation cycling is

performed for 60min (12 cycles) and 75min (15 cycles) in

two independent experiments to spin up convection along

with additive noise. Ensemble forecasts are initialized af-

ter the repeated assimilation or spinup cycling and are

used as backgrounds for targeted observation assimilation

and estimation. Reflectivity is only assimilated during this

spinup assimilation cycling since radial velocity is the focus

of this targeted observation study.

c. Ensemble-based targeted observation algorithm
and implementation for radial velocity
observations

The impact of an observation is predicted by esti-

mating forecast metric variance reduction dsJ via:

ds
J0t2
52hJ0

t2
Hx0t1

� �Ti HPb
t1
HT 1R

� �21h Hx0t1

� �
J
0T
t2
i, (1)

where J0
t2
is the ensemble perturbation of a scalar metric

at forecast time t2, x
0
t1
is the model background ensemble

perturbation at the targeted observation time t1, H is the

forward operator that converts the model state to an

ensemble estimate of the observation (radial velocity),

R is the observation error covariance, and h*i denotes
covariance between two quantities. In this study, H and

R do not vary with time, so the time subscript is omitted.

Pb
t1
is the background ensemble covariance at time t1

(Bishop et al. 2001; Ancell and Hakim 2007; Torn and

Hakim 2008; Torn and Hakim 2009; Torn 2014). This

technique requires no knowledge of the actual obser-

vation value thus allows an opportunity to estimate

observation impacts before sampling and assimilation.

Both simultaneous and serial estimation approaches

were proposed previously to estimate the impact of the

targeted observations (Bishop et al. 2001; Ancell and

Hakim 2007). In this study, the estimation is performed

serially, meaning the estimated forecast variance re-

duction is calculated for each observation individually in

sequence, and the total impact of an observation set is

determined by a summation of each forecast variance

reduction estimate. Since ensemble perturbations are

updated after the assimilation of each observation, the

ensemble perturbations of J and Hx also need to be

updated before being used by (1) to estimate the error

variance reduction for the next observation. Specifically,

H
i
x0i,t1 5H

i
x0i21,t1

2H
i
~K
i21

H
i21

x0i21,t1

h i

5H
i
x0i21,t1

2

 
11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

i21

H
i21

Pb
t1
HT

i21 1R
i21

s !21

hH
i
x0i21,t1

x
0T
i21,t1

HT
i21i H

i21
Pb
t1
HT

i21 1R
i21

� �21

H
i21

x0i21,t1

h i
(2)

and

J0
i,t2

5 J0
i21,t2

2

 
11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

i21

H
i21
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t1
HT

i21 1R
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hJ0
i21,t2
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0

i21,t1
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i21i H
i21
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� �21

H
i21

x0i21,t1

h i
, (3)
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where i is the ith observation and i 2 1 denotes the

observation preceding the ith observation, and ~Ki21 is

the reduced Kalman gain defined as follows:

~K
i21

5

 
11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

i21

H
i21

Pb
t1
HT

i21 1R
i21

s !21

3 Pb
t1
HT

i21 H
i21

Pb
t1
HT

i21 1R
i21

� �21

. (4)

In(2)–(4),Hi21P
b
t1
HT

i21 5 hHix
0
i21,t1

x
0T
i21,t1

HT
i21i andPb

t1
HT

i21 5
hx0i21,t1

x
0T
i21,t1

HT
i21i. The update of ensemble perturbations

in (2)–(4) are required to be consistent with the serial

assimilation algorithm.

In (2)–(4), ensemble covariances are used to calcu-

late hHix
0
i21,t1

x
0T
i21,t1

HT
i21i and hJ0

i21,t2
xT

0
i21,t1

HT
i21i. Both are

subject to the sampling error due to the limited ensemble

size. These equations are closely related to the ensemble

sensitivity of the forecast metric to the observation en-

semble estimate (e.g., Ancell and Hakim 2007; Torn and

Hakim 2008):

›J

›(Hx)
i

5hJ0
i,t2
xT

0
i,t1
HT

i i H
i
Pb

t1
HT

i

� �21

. (5)

In this study, the estimated forecast metric variance re-

duction is only calculated for future observations that are

assumed to have an impact on the scalar forecast metric.

We adopt the statistical significance test approach to de-

termine if the impact is significant or not. This calculation

is a linear regression from which confidence bounds are

computed (Wilks 2011, section 6.2.5). A future observation

is assumed to impact the forecast metric only if the null

hypothesis can be rejected within a specified confidence

interval. Large linear regression error results in a signifi-

cance test failure and observation rejection. For this study,

this confidence interval ranges from 95% to 99% de-

pending on the point of storm evolution. If an ensemble

sensitivity value in (5) does not fit within the confidence

bounds, the observation estimate is disregarded and not

included in the above workflow. Sensitivity between ob-

servation estimates are also calculated to remove observa-

tion estimates correlated with other observation estimates.

The significance testing of observation correlations does

not notably impact the results in this OSSE but is still

utilized to be consistent with potential future studies

where it may be more impactful. The scalar forecast

metric J throughout this study is 0–1-km updraft helicity

(hereafter UH01), a metric that quantifies low-level ro-

tation associated with supercells (Kain et al. 2008) while

the ensemble estimated observation Hx is radial velocity.

Four observation sets are tested in this study. These

include full volume (all 14 elevation angles), low level

(elevation angles: 0.58, 1.58, 2.48), midlevel (elevation

angles: 6.28, 7.58, 8.78), and high levels (elevation angles:

14.08, 16.78, 19.58; Fig. 2). The ensemble forecasts ini-

tialized after storm spinup described above are used as

backgrounds for observation assimilation 10, 15, and

20min into the forecast windows individually (Fig. 3).

The impact of each of the four observation sets is pre-

dicted or estimated following (1). Specifically, the tar-

geted observation algorithm is applied to all observation

sets using the ensemble forecasts initialized at t0 to es-

timate the impacts on UH01 forecasts at t2 via radial

velocity observation assimilation at t1.

These observation impact predictions are then verified

through the actual assimilation of the observation sets. The

four observation sets are independently assimilated at each

observation time before subsequent forecasts are initialized.

Forecast error reduction ofUH01 at t2 (Fig. 3) is determined

by calculating error in forecasts before and after the assim-

ilation. The assimilation impacts are assessed by averaging

error over the three t1 initialized forecasts to reduce noise

attributed to a single forecast. Using a single initialization

time and observation set can result in misleading results

when comparing various observation set experiments.

d. Targeted observation experiment design and
assessment

In this study, the forecast metric J is defined as UH01

averaged across the domain, or storm, at grid points

where UH01 $ 5m2 s22. This prevents UH01 not as-

sociated with the right-mover mesocyclone from con-

taminating the results. The left-mover does not have

substantial associated low-level rotation.

Since the true state is known in this OSSE, the estimated

forecast error variance reduction can be verified using the

actual error variance reduction. Error variance is defined as

error variance5
1

50
�
50

n51

(J
t
2 J

n
)2 , (6)

FIG. 2. 14 simulated elevation angles of a full-volume scan with

the selected angles for the low level (blue), midlevel (red), and high

level (green). The approximate updraft location relative to the

radar is illustrated by a black oval.

MARCH 2020 KERR AND WANG 881

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/148/3/877/4922975/m
w

rd190197.pdf by N
O

AA C
entral Library user on 11 August 2020



where Jt is the truth forecast metric and Jn is the

forecast metric of nth ensemble member. The error

variance is calculated for the forecasts with and with-

out assimilating the observation sets to obtain the ac-

tual error variance reduction or difference. The actual

error variance reduction is used to verify the predicted

or estimated variance reduction from the targeted

observation algorithm (1).

Ensemble forecasts are initialized 60, 75, and 90min

into the 5-min assimilation cycling procedure described

above. These forecasts serve as backgrounds for as-

similation of the three observation subsets and full-

volume observation set at various times (10–20min)

beyond the initialization time (Fig. 3). For the 60-min

initialization experiments, observations (70–80min) are

assimilated during the splitting stage of the supercell.

The 75-min initialization experiments have observa-

tions (85–95min) poststorm split. Last, the 90-min

initialization experiments only have observations at

100 and 105 to show an example when background

ensemble variance is smaller. The assimilation impacts

are assessed on the basis of reduction in error variance

in (6) from the free forecasts at various forecast lead

times (t2; Fig. 3).

3. Results

a. Estimate sensitivity to treatment of ensemble
sampling errors

As discussed in section 2c, a statistical significance

testing method is used to alleviate the sampling error as-

sociated with the limited ensemble size during the error

variance reduction estimate (Wilks 2011). Confidence

bounds described above are required to only consider

observations that have a statistically significant relationship

with the forecast metric or that changes in the observation

model estimate will induce changes on the forecast metric.

The size of this statistical significance confidence interval is

critical to ensure accurate estimates of error reduction via

observation assimilation. Various confidence intervals are

applied individually to sample observation estimates and

subsequent forecasts (Fig. 4). The differences are between

the estimated and actual error variance reductions as

fractions of the background error variance expressed by

Difference5
(estimated var reduction2 actual var reduction)

background error var
. (7)

Therefore, positive (negative) values indicate an over (un-

der) estimation of reduction where zero is a perfect esti-

mate. For an initialized forecast at 60min with targeted

observations at 75min example, a 99% confidence interval

is the closest to zero (Fig. 4a).However, a forecast initialized

at 75min for targeted observations at 90min requires only a

95% confidence interval to be closest to a perfect forecast

(Fig. 4b). This demonstrates the need for an adaptive con-

fidence interval throughout storm evolution. The number of

observations that passes the statistical significance test is

quite small compared to all observations in each set. At

most, only 20% of available observations are used in the

estimate calculations while there are also instances of less

than 5% passing the test, depending on the period of storm

evolution and confidence interval value. The linear rela-

tionships between radial velocity observations and forecast

metrics may be weaker during certain periods of convective

storm evolution (e.g., spinup or supercell splitting) com-

pared to periods when storms are mature. These periods of

higher nonlinearity would likely require higher confidence

intervals. Estimated error variance reductions are verified in

the next section at two periods during supercell evolution.

b. Accuracy of the error variance reduction estimation
with respect to different storm evolution stages

As stated above, the linearity between observations

and forecast metrics may vary throughout storm evolu-

tion due to various processes (supercell splitting in this

FIG. 3. Schematic for experiments where radial velocity observations are assimilated at t1 using an ensemble

forecast initialized at t0 as the background after repeated spinup assimilation cycling. The impact on UH01 at t2
via assimilation at t1 is assessed.
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case). Therefore, the accuracy of error variance reduc-

tion estimations can vary even with adaptive confidence

intervals described above, and this method is applied

during the storm splitting phase (60min; Fig. 2b) and

postsplit/mature phase (75min; Fig. 2c). Estimated vari-

ance reductions are calculated for 60-min initialization

experiments using (1)–(5) (Fig. 5), and the process de-

scribed in the previous section. Variance reduction es-

timates for various lead times are shown in general

similarly to the actual error variance reductions. The

confidence interval used in (5) for 60-min initialization exper-

iments (splitting stage) is 99%. The high threshold reduces

effects of sampling errors and nonlinearity prevalent

during the splitting stage. One notable overestimate is

that of the low-level observation set impact, particularly

for a 20- to 30-min lead time. Different from large-scale

application, the actual forecast error reductions are noisy

throughout the forecast window for all observation set

experiments. This creates difficulties for the targeted

observation algorithm to predict observation impacts for

convective scales.

After the storm split (75-min initialization experi-

ments), forecast variance reduction estimates are again

computed but with a confidence interval for (5) of 95%

(Fig. 6). Compared to the results initialized before the

storm splitting (Fig. 5), the actual error variance re-

duction is smoother with respect to the forecast lead

times. The variance reduction estimates are more simi-

lar in magnitude and lead time behavior as the actual

error variance reductions. These results signal a more

linear relationship between radial velocity observations

and UH01 forecasts after the right-mover has fully split

off of the left-mover. Generally, the estimated impacts

of each observation set experiment relative to one an-

other are comparable to the actual error variance re-

ductions. The estimate shows a diminished impact of the

low-level observation set beyond 15min with this set

creating the smallest reduction for the remainder of the

forecast window. The high-level set reduction estimate

FIG. 5. Full-volume set (black), low-level set (blue), midlevel set (red), and high-level set

(green) ensemble variance reduction estimate (dashed) and actual (solid) with forecast lead

time averaged over ensemble forecasts initialized after assimilation at 70, 75, and 80min using

a forecast initialized at 60min.

FIG. 4. Normalized estimated variance reduction via assimilation

of high-level scan for confidence bounds of 90%, 95%, 99%, and

99.9% where positive (negative) values indicate an under (over)

estimate for a (a) 60-min initialization example and (b) 75-min

initialization example.
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is not substantially larger than the full-volume set re-

duction at later lead times (40–45min) as in the actual

error variance reductions, but having reduction esti-

mates that are similar should preclude choosing the set

with more observations.

c. Impact of adaptive scanning versus full scanning

Results from the 75-min initialization experiments

show the low-level observation set reduces the error

variance more than the mid- and high-level sets at

;10-min lead times (Fig. 6). However, as forecast lead

time increases, the low-level set assimilation is less

impactful compared to the mid- and high-level sets.

By a 35-min lead time, the high-level set has reduced

the error variance more than the full-volume scan set

(approximately 6m2 s22 at 40min). At this point of

storm evolution and radar-relative location, the high

sector is sampling the maximum updraft speed height

(Fig. 7a). The statistically significant observations

for a 30-min forecast determined by (4) for the high

sector show a concentration around the right-mover

updraft and along the radar-relative updraft periph-

erals (Fig. 7b). In other words, the updraft vorticity

accuracy around the height of maximum speed is

crucial for low-level rotation accuracy in the near-

future (30–45min).

Comparing example masked correlations between a

full-volume assimilation and maximum updraft region

assimilation reveals UH01 is affected more by the full-

volume scan in regions that are not dynamically intui-

tive (Fig. 8a). This includes many noisy correlations

within the anvil region. Observations assimilated in

locations below the high-sector/max updraft speed re-

gion still impact the state within the horizontal cross

section given the covariance localization radius. The

correlations on the updraft periphery are present on

both assimilation experiments and align with the pre-

viously described ‘‘significant’’ radial velocity obser-

vations (Figs. 7b and 8b), however, the correlations

within areas distant from the updraft may have nega-

tive impacts on the forecast metric as they are likely

FIG. 6. As in Fig. 5, but for average over ensemble forecasts initialized after assimilation at 85,

90, and 95min using a forecast initialized at 75min.

FIG. 7. (a) Truth simulation domain-maximum updraft speed

with height at 90min. (b) ‘‘Significant’’ high-sector scan observa-

tions (blue dots) generally along the peripheries of the right-mover

updraft (5m s21, green contour) relative to the radar location

(black dot) with reflectivity (20 dBZ, black contour) at ;11.5 km.
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spurious. Therefore, assimilating all available obser-

vations may not necessarily be the best strategy.

d. Overall evaluation of the error variance reduction
estimate

Combing each forecast estimate (108 estimate sam-

ples—9 forecast lead times [5–45 min] for three ob-

servation times, four observation sets) to its respective

actual error variance reduction value reveals the gen-

eral skill of the targeted observation algorithm (1)–(5)

for both the 60- and 75-min initialization experiments

(Figs. 9a,b). Points below the 458 slope signify an over-

estimation of variance reduction while points above the

458 slope indicate an underestimation for that particular

forecast sample. While some individual forecast variance

reduction estimates are inaccurate, the overall trend is

encouraging as the estimated reductions increase with

increasing actual error variance reduction. Normalizing

all forecast sample estimates and actual error variance

reduction values for both 60- and 75-min initialization

experiments (216 total samples) shows a positive corre-

lation between the predicted impacts and actual, verified

impacts via a larger sample size (Fig. 9c).

Following Majumdar et al. (2001), a test to determine

whether the estimated variance reduction and actual

variance reduction are statistically related. The sam-

ples are grouped in three bins of 72 samples based on

the lowest, middle, and highest estimated variance re-

ductions (Fig. 9c). The height of each bin is the average

actual variance reduction for the bin’s samples. Each

bin has a x2 distribution (72 degrees of freedom) with a

99% confidence interval placed on the actual variance

reduction. The confidence bounds illustrate it is im-

possible to show the actual variance reduction as a

decreasing function of estimated variance reduction.

e. Accuracy of the error variance reduction estimation
with respect to ratio of observation error variance
and background ensemble variance

While the variance reduction estimates are skillful

during the development stages, the ability to reason-

ably estimate variance reduction degrades at later

times during storm evolution. An ensemble forecast is

initialized at 90min after 5-min assimilation cycling

described in the previous section (18 cycles). The im-

pacts of the four observation sets are estimated and

verified as in the 60- and 75-min initialization experi-

ments. Through many confidence interval trials and

adjustments, the targeted observation algorithm does

not provide decent forecast variance reduction esti-

mates, even with a very high observation confidence

interval of 99.9% (Fig. 10a). The regression slope of

these samples is not as optimal as the in the earlier time

samples (Fig. 9). Over 90min of assimilation cycling,

ensemble spread decreases (not shown), thus the im-

pact of observation assimilation decreases. In other

words, the information content in the observation rel-

ative to the background forecast is reduced at later data

assimilation cycles. The sudden worsening of the vari-

ance reduction estimate skill may be due to the smaller

overall observation impact on subsequent forecasts.

Model estimated radial velocity variance decreases

drastically between the 75- and 90-min initialization

experiments (Fig. 10b). For model radial velocity in the

FIG. 8. From the 75-min initialized forecast, correlations between;8.5-km horizontal wind speed at 90min and

120-min averaged UH01 at locations where the 90-min horizontal wind speed analysis increment is $2m s21 after

(a) full-volume scan assimilation and (b) high-sector scan assimilation with reflectivity (20 dBZ, black contour)

and vertical velocity (5m s21, green contour).
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90-min experiments (observations at 100 and 105min),

the average Hx less than the radial velocity observation

error variance of 4 (m s21)2. The average error of the

estimated variance reductions for all lead times for

each initialization time are compared to the ratio of

radial velocity ensemble variance and observation er-

ror variance (Fig. 10c). When ensemble variance is less

than observation error variance (ratio, 1), the error is

significantly greater than when the ensemble variance

is sufficient. Thus, the ensemble becomes too under-

dispersive for observations to have any meaningful

impact on analyses and subsequent forecasts. The

targeting algorithm cannot produce accurate impact

estimates under these conditions. Therefore, sufficient

FIG. 9. Scatter of the estimated variance reduction vs actual error variance reduction [both in (m2 s22)2] of 45-min forecasts in 5min

intervals after assimilating four observation sets at (a) 70, 75, and 80min with regression slope and 458 slope (108 samples), (b) 85, 90, and

95minwith regression slope and 458 slope (108 samples), (c) all times normalized (216 total samples) with three bins for the lowest, middle,

and highest estimated variance reduction samples where the height of each bin is the average actual variance reduction with regression

slope and 458 slope, and (d) three bins from (c) with 99% x2 interval and bounds with regression slope.
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FIG. 10. (a) As in Figs. 9a and 9b, but for observation sets at 100 and 105min using an

ensemble forecast initialized at 90min. (b) Ensemble variance of model estimated radial ve-

locity observations (full-volume scan average) at various times during storm evolution.

(c) Average fractional difference (error) for all lead times of the three initialization times as a

function of ensemble variance and observation error variance ratio.
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ensemble spread is necessary for this technique to be

suitably utilized.

4. Discussion and conclusions

An ensemble-based targeted observation algorithm

is applied to Doppler radial velocity observations for

the prediction of low-level rotation of a supercell. It is

found that when the ensemble has sufficient spread, the

ensemble-based estimation can in general reasonably

predict the actual error variance reduction. It should be

noted that these conclusions are specific to this idealized

case, and other cases may yield different results. Low-

level rotation forecast metrics may be too noisy in less

ideal scenarios, forcing the usage of other metrics.

Normalized estimates and actual error variance re-

ductions of the 60- and 75-min forecast initialization

times show an encouraging trend and a general corre-

lation between the estimates and actual error reduction

(Fig. 9c). This includes the three storm sectors and full-

volume scans. Once ensemble variance of model esti-

mated observations approaches the observation error

variance, the ability of the algorithm to accurately pre-

dict observation impacts diminishes even with a stricter

method to treat sampling errors. This result suggests the

targeted radial velocity observations may mostly useful

at earlier stage of the data assimilation cycling where

large correction associated with large forecast error

variance is expected. It is also found that targeted radial

velocity observations may be most useful when associ-

ated with less nonlinearity. Estimates of forecast vari-

ance reduction to lead times beyond 45min are poor

given sampling error and increased nonlinear relation-

ships between observations and the forecast metric. The

accuracy of the estimation of the observation impact

tends to be reduced when the forecast period covers a

rather nonlinear stage of the storm development (e.g.,

splitting).

The targeted observation algorithm predicts various

sector scans to have comparable or greater impacts on

UH01 than full-volume scans at various forecast lead

times. The assimilation experiments used to verify the

targeted observation predictions show similar impact

difference between observation sets. This includes the

significance of the maximum updraft speed region for a

30–45-min forecast. The maximum updraft speed region

sector observations reduce the forecast variance more

than the full-volume scan when assimilated between 85

and 95min. While the full-volume scan should be as-

similated at given times during storm evolution, the

maximumupdraft speed regionmay only be necessary at

other times. This region is ultimately the dynamical in-

dicator of storm strength and potential longevity. Thus,

observations within this zone are crucial to model

forecasts. Low-level observations are generally useful

for forecast lead times of 15min or less. These very short

model forecast lead times would likely not be beneficial

to meteorologists as are the 30–45-min model forecasts.

Therefore, low-level radial velocity observations may

not be important for the intended purpose of an oper-

ational WoF ensemble system which is focused on

forecast lead times up to 3 h.

A perplexing question that arises from the results is

why forecasts sometimes improve by assimilating a

subset of the full-volume scan rather than the entire

volume. One potential cause of this outcome may be

sampling error inducing spurious correlations between

some observations within the full-volume scan and

UH01. Correlations between the initial condition state

horizontal wind speed (a proxy for radial velocity) and

30-min forecast UH01 are masked by horizontal wind

speed analysis increments after the assimilation of a full-

volume scan and high-sector (maximum updraft region)

scan (Fig. 5). The visible correlations indicate that

through the assimilation of radial velocity observations,

the horizontal wind speed state is altered thus impacting

the ensemble UH01 forecast. A larger ensemble can

deter some spurious correlations, but this comes at the

cost of increasing the computational expense.

A significant advantage of targeted observations during

supercell thunderstorm development would be the op-

portunity to observe low vertical levels multiple times

each minute to benefit human forecasters while only

observing the maximum updraft speed region once per

minute for potential assimilation. This would provide

meteorologists rapidly updating data which has been

shown to increase situational awareness and increase

warning lead time while also providing the necessary

observations for the operational ensemble forecasting

system since a subset of a full-volume scan could be

sufficient. Reducing the number of observations as-

similated significantly also alleviates the computational

burden of frequently assimilating radar observations

every 1 or 5min meaning not all observations collected

need assimilation.

Future studies should incorporate reflectivity into the

targeted observation algorithm. This will be challenging

given the high nonlinearity between the model state and

observation. Further work can also add a temporal

component to the algorithm to estimate the effect of

assimilation cycling over short time periods (10–15min).

Also, a study that assesses the impacts of only assimi-

lating observations predicted to have statistically sig-

nificant impacts on forecast metrics could be intriguing.

Other severe convection forecast metrics should be

considered such as reflectivity and surface wind speed in
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conjunction with low-level rotation to determine which

targeted observations are optimal for all hazards simulta-

neously. Since the appropriate confidence interval varies

with time in this study, further research should consider

real-data and imperfect cases to determine suitable confi-

dence interval values when model error can negatively

impact the targeted observation algorithm.
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Zrnić, D. S., and Coauthors, 2007: Agile-beam phased array radar

for weather observations. Bull. Amer. Meteor. Soc., 88, 1753–
1766, https://doi.org/10.1175/BAMS-88-11-1753.

890 MONTHLY WEATHER REV IEW VOLUME 148

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/148/3/877/4922975/m
w

rd190197.pdf by N
O

AA C
entral Library user on 11 August 2020

https://doi.org/10.1175/MWR-D-17-0029.1
https://doi.org/10.1175/MWR-D-17-0029.1
https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
https://doi.org/10.2151/sola.2017-032
https://doi.org/10.2151/jmsj.2019-014
https://doi.org/10.1002/qj.49712757815
https://doi.org/10.1175/1520-0469(1998)055<0633:SVMAAO>2.0.CO;2
https://doi.org/10.1175/1520-0469(1998)055<0633:SVMAAO>2.0.CO;2
https://doi.org/10.5065/D68S4MVH
https://doi.org/10.1175//2555.1
https://doi.org/10.1175/MWR-D-12-00203.1
https://doi.org/10.1175/MWR-D-12-00203.1
https://doi.org/10.1175/MWR-D-14-00323.1
https://ams.confex.com/ams/annual2002/techprogram/paper_25318.htm
https://ams.confex.com/ams/annual2002/techprogram/paper_25318.htm
https://doi.org/10.1175/2009BAMS2795.1
https://doi.org/10.1016/j.atmosres.2012.04.004
https://doi.org/10.1016/j.atmosres.2012.04.004
https://doi.org/10.1175/WAF-D-19-0165.1
https://doi.org/10.1175/WAF-D-16-0159.1
https://doi.org/10.1175/2008MWR2387.1
https://doi.org/10.1175/2008MWR2387.1
https://doi.org/10.1175/MWR2898.1
https://doi.org/10.1175/MWR-D-13-00284.1
https://doi.org/10.1175/2007MWR2132.1
https://doi.org/10.1175/2007MWR2132.1
https://doi.org/10.1175/2009MWR2879.1
https://doi.org/10.1175/2009MWR2879.1
https://doi.org/10.1175/MWR-D-16-0231.1
https://doi.org/10.1175/BAMS-88-11-1739
https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2
https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2
https://doi.org/10.1175/MWR-D-13-00260.1
https://doi.org/10.1175/MWR-D-13-00260.1
https://doi.org/10.1175/2009MWR2925.1
https://doi.org/10.1175/2009MWR2925.1
https://doi.org/10.1175/MWR-D-10-05074.1
https://doi.org/10.1175/MWR-D-12-00237.1
https://doi.org/10.1175/MWR-D-12-00237.1
https://doi.org/10.1175/BAMS-88-11-1753

